Optimal parameters related with continuity properties of the multilinear fractional integral operator between Lebesgue and Lipschitz spaces
نویسندگان
چکیده
We deal with the boundedness of multilinear fractional integral operator $$I_{\gamma ,m}$$ from a product weighted Lebesgue spaces into adequate Lipschitz spaces. Our results generalize some previous estimates not only for linear case but also unweighted problem in context. characterize classes weights which described above holds and show optimal range parameters involved. The optimality is understood sense that defining corresponding belong to certain region. further exhibit examples class cover mentioned area.
منابع مشابه
the evaluation of language related engagment and task related engagment with the purpose of investigating the effect of metatalk and task typology
abstract while task-based instruction is considered as the most effective way to learn a language in the related literature, it is oversimplified on various grounds. different variables may affect how students are engaged with not only the language but also with the task itself. the present study was conducted to investigate language and task related engagement on the basis of the task typolog...
15 صفحه اولsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولThe Averaging Integral Operator between Weighted Lebesgue Spaces and Reverse Hölder Inequalities
Let 1 < p ≤ q < +∞ and let v, w be weights on (0,+∞) satisfying: v(x)xρ is equivalent to a non-decreasing function on (0,+∞) for some ρ ≥ 0; [w(x)x] ≈ [v(x)x] for all x ∈ (0,+∞). Let A be the averaging operator given by (Af)(x) := 1 x R x 0 f(t) dt, x ∈ (0,+∞). First, we prove that the operator A : L((0,+∞); v)→ L((0,+∞); v) is bounded if and only if the operator A : L((0,+∞); v)→ L((0,+∞);w) i...
متن کاملIntegral representations and properties of operator fractional
Operator fractional Brownian motions (OFBMs) are (i) Gaussian, (ii) operator self-similar, and (iii) stationary increment processes. They are the natural multivariate generalizations of the well-studied fractional Brownian motions. Because of the possible lack of time reversibility, the defining properties (i)-(iii) do not, in general, characterize the covariance structure of OFBMs. To circumve...
متن کاملContinuity for Multilinear Commutator of Littlewood-paley Operator on Besov Spaces
As the development of the singular integral operators, their commutators have been well studied (see [1, 2, 3, 14]). From [2, 3, 9, 13], we know that the commutators and multilinear operators generated by the singular integral operators and the Lipschitz functions are bounded on the Triebel-Lizorkin and Lebesgue spaces. The purpose of this paper is to introduce the multilinear commutator associ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Positivity
سال: 2023
ISSN: ['1572-9281', '1385-1292']
DOI: https://doi.org/10.1007/s11117-023-00973-x